bigpo.ru
добавить свой файл
1 2 3
ГЛАВА 1. СПЕЦИФИКА ЭКОЛОГИЧЕСКОГО ПРОГНОЗИРОВАНИЯ

1.1. ОСНОВНЫЕ ПОНЯТИЯ ЭКОЛОГИЧЕСКОГО ПРОГНОЗИРОВАНИЯ

Их мудрецы, свой мир бескрайний

Поставив центром бытия,

Спешат проникнуть в искры тайны

И умствуют, как ныне я...

Валерий Брюсов

Экологическое прогнозирование, с одной стороны, можно рассматривать как "функцию" экологии, с другой - как составляющую экологического мониторинга, а с третьей - как раздел прогностики (науки о закономерностях разработки прогнозов). Поэтому одни понятия экологического прогнозирования являются собственно экологическими, другие имеют непосредственное отношение к мониторингу, третьи обладают общенаучной значимостью.

В литературе наблюдается значительное разноголосье в толковании и использовании некоторых прогностических терминов. Более того, понятие "детальность формулировки прогноза" (или какое-нибудь ему подобное), например, вообще отсутствует как в сборнике рекомендуемых терминов по прогностике, (Прогностика. Терминология, 1978), так и в основных руководствах по прогнозированию (Тейл, 1971; Лисичкин, 1972; Саркисян, Голованов, 1975; Саркисян и др., 1977; Рабочая книга.., 1982; Кашьяр, Рао, 1983; Горелова, Мельникова, 1986 и др.). Между тем, как будет показано ниже, оно является одним из основных понятий прогностики вообще, и экологического прогнозирования в частности. Поэтому предварительно имеет смысл привести ряд основных понятий и определений экологического прогнозирования, необходимых для дальнейшего изложения.


1.1.1. Терминология и необходимые определения

Термин "прогноз" - греческого происхождения. Это слово означает суждение о состоянии какого-либо объекта или явления в будущем.

Под экологическим прогнозированием понимается предсказание состояния такой системы, среди существенных элементов которой фигурирует хотя бы одна биотическая компонента экосистемы (популяция, сообщество, синузия и пр.). Инструментом экологического прогнозирования является экологический предиктор - модель (не обязательно математическая), служащая для формирования экологического прогноза. Отдельный экологический предиктор, построенный модельером (под модельером здесь понимается человек, коллектив, организация, разрабатывающие модель, или программа, синтезирующая модель, и пр.), называется предиктором-индивидуумом (Брусиловский, 1987).

Пусть прогноз изменения показателя Y производится n отдельными предикторами-индивидуумами, построенными различными методами (или/и различными модельерами) и служащими для достижения одной цели. Организация их в коллектив может быть осуществлена либо путем комплексации прогнозов, либо путем комплексации самих предикторов. Под комплексацией прогнозов Y(1), ..., Y(n), полученных с помощью n предикторов-индивидуумов, будем понимать процесс разработки оптимального в некотором смысле прогноза Y* показателя Y, служащего той же цели и являющегося функцией исходных прогнозов:

Y* = F[Y(1), Y(2), ..., Y(n), X].

Прогноз Y*, полученный в итоге комплексации отдельных прогнозов Y(1), Y(2), ..., Y(n), будем далее называть коллективным прогнозом (коллективом предикторов).

Коллектив предикторов должен быть организован так, чтобы, во-первых, срабатывал эффект системности типа "целое больше суммы своих частей": надежность прогнозов коллектива предикторов должна быть выше надежности лучшего из предикторов-индивидуумов - членов коллектива. Во-вторых, прогнозы коллектива предикторов должны быть робастными: ошибки предсказаний малой доли предикторов-индивидуумов в коллективе, сколь значительными они бы ни были, должны несущественно сказываться на надежности комплексных прогнозов. В-третьих, для элиминации омнипотентности факторов в коллектив должны включаться самые "лучшие" и самые "непохожие" между собой предикторы-индивидуумы.

Таким образом, резерв повышения надежности экологического прогнозирования состоит в организации отдельных предикторов (включая экспертов) в коллектив (Брусиловский, Розенберг, 1983; Розенберг, 1984; Брусиловский, 1985; 1987). Здесь при построении прогнозов экстремум показателей качества ищется не только по параметрам отдельного предиктора и не только путем выбора лучшего среди заданного набора отдельных предикторов, но и по всевозможным их суперпозициям.

Одной из основных характеристик экологического прогноза нужно считать детальность формулировки прогноза. Детальность прогноза можно рассматривать в различных ракурсах: по структуре, параметрам и т.п. Далее более детальным будем считать прогноз, сформулированный в более сильной шкале. Прогноз, сформулированный в количественной шкале, - самый сильный, прогноз в ранговой шкале уступает ему, а прогноз в шкале наименований - самый слабый из всех существующих (в последнем случае говорят о прогнозе макросостояний системы).

Любой экологический предиктор состояния функционирующей системы разрабатывается с непосредственным использованием эмпирических данных, полученных с некоторым временным шагом наблюдений. Этот шаг характеризует детальность имеющейся апостериорной информации по оси времени.

Как правило, экологические предикторы синтезируются с целью выработки прогнозов с заданным шагом, характеризующим детальность формулировки прогноза по оси времени. В общем случае шаг наблюдений не совпадает с шагом прогноза. Из двух прогнозов состояния изучаемой системы, выполненных для одного и того же будущего момента времени, более детальным по времени будем считать тот, у которого шаг прогноза меньше.

Для целей данной работы более строгое определение детальности формулировки прогноза не потребуется. Будет достаточно его интуитивного воприятия: более детальный, значит, более подробный.

Отметим, что впервые, правда в ином контексте, подобные термины - "уровень детализации прогноза", "детализация языка моделирования" - конструктивно были использованы в методе группового учета аргументов (МГУА; Ивахненко, 1982; Ивахненко, Степашко, 1985). Экологический предиктор строится с использованием определенной информации о функционировании системы в течение некоторого прошлого отрезка времени. Величина этого отрезка называется периодом основания прогноза (Прогностика. Терминология.., 1978).

Промежуток времени, на который разрабатывается прогноз, называется периодом (временем) упреждения прогноза (Там же, 1978). Наряду с временем упреждения и детальностью формулировки другой важнейшей характеристикой любого прогноза является его надежность (точность, достоверность). Под надежностью прогноза будем понимать некоторую разумную меру отличия предсказанных состояний экосистемы от реализовавшихся в действительности. Конкретные меры отличия будут приведены в следующих главах. Здесь же уместно отметить, что общепризнанного определения надежности экологического прогноза нет и, вероятно, не может быть в принципе, в силу необозримого многообразия экосистем, целей и методов прогнозирования. Тем не менее можно утверждать, что с ростом времени упреждения при прочих равных условиях надежность прогнозов падает.

Оценивание надежности прогнозов называется верификацией (Прогностика. Терминология.., 1978). Методика верификации во многом определяется основными характеристиками прогноза. Унифицированной методики верификации экологических прогнозов не существует по тем же причинам. Поэтому для каждого случая предсказания, для каждой системы необходимо описывать порядок верификации прогнозов.

Можно назвать еще и принцип экономичности моделей экологического прогнозирования - выбор минимально возможного числа параметров модели при условии сохранения ее достаточной адекватности. Например, использование завышенного показателя степени полинома-предиктора в самоорганизующейся модели или порядка разности в модели авторегрессии приводит к росту дисперсии ошибок и к заметному росту дисперсии самого прогноза.

Время упреждения, детальность формулировки и надежность - основные характеристики экологического прогноза. Без их учета любые рассмотрения каких бы то ни было прогнозов просто бессмысленны. С другой стороны, этих характеристик достаточно для обсуждения многих содержательных задач. Например, какой может быть максимальная надежность прогноза состояния изучаемой системы при заданных времени упреждения и детальности формулировки? Какой должна быть наибольшая детальность формулировки прогноза при требуемых надежности и времени упреждения?

Наконец, последний термин, который имеет смысл здесь привести, - это система экологического прогнозирования. Такие системы предназначены для формирования по всей доступной информации максимально надежных экологических прогнозов; они включают в себя методы прогнозирования и средства их реализации. Систему экологического прогнозирования можно рассматривать как подсистему экологического мониторинга.

В системе экологического прогнозирования должен осуществляться синтез лучших достижений экологии, прогностики и информатики. В будущем подобные системы, возможно, смогут перерасти в экологические банки знаний и в автоматизированные системы управления рациональным природопользованием, включая в себя соответствующие экспертные системы.

1.1.2. Классификация экологических прогнозов

Существует обширная литература по классификации объектов прогнозирования, методов прогнозирования и самих прогнозов применительно к различным областям знаний (Тейл, 1971; Рабочая книга.., 1982). Однако сколько-нибудь обстоятельной классификации экологических прогнозов до сих пор не разработано. Поэтому, основываясь на классификации прогнозов функционирования сложных систем и собственного опыта, дадим классификацию экологических прогнозов, необходимую для дальнейшего изложения.

Все прогнозируемые системы и явления можно различать по шести основным признакам. Природа объекта моделирования и прогнозирования задает специфичность подходов (для экологических систем об этом говорилось выше). Можно добавить, что экосистемы - это объекты сложной природы, и методологической основой их изучения служит теория сложных систем (системология). По масштабности различают сублокальные (1-3 переменные), локальные (4-14), субглобальные (15-35), глобольные (36-100) и суперглобальные (более 100 переменных). В экологии для прогнозирования используют системы всех масштабов, однако наибольший интерес представляют различные варианты глобальных экосистем (число переменных более 15). Масштабность не имеет самостоятельного значения для выбора метода прогнозирования.

Она учитывается в совокупности со сложностью обработки информации о системе: сверхпростые системы (связей переменных практически нет), простые (только парные взаимосвязи), сложные (учитывается взаимовлияние 3 и более переменных) и сверхсложные (учитываются все взаимосвязи между переменными). Экосистемы принадлежат к сложным системам и качество прогноза прямо связано как с учетом большого числа переменных, так и всевозможных взаимосвязей этих переменных. Далее, для выбора метода прогнозирования важны степень детерминантности систем (детерминированные, стохастические и смешанные системы) и характер развития систем во времени (дискретные, апериодические и циклические системы). Экологические системы имеют существенную стохастическую составляющую и, практически, весь спектр характера развития. Например, американский эколог Р.Уиттекер (1980) приводит примеры разнообразных типов поведения популяций во времени: почти детерминированный характер смены деревьев дуба белого в дубово-гикориевом лесу, периодический характер распространения ели под воздействием штормовых ветровалов в Аппалачских горах, почти случайный характер "вспышек" численности саранчи или иван-чая на гарях, периодические колебания системы зайцы - рыси в Канадской Арктике и пр. Последний важный признак - это степень информационной обеспеченности. В шкале системы "черного ящика" (структура и поведение которых практически неизвестны) и "белого ящика" (о системах известно все) экологические объекты должны быть отнесены к типу "серого ящика", в "цветовой шкале" - скорее даже к темно-серому цвету.

В зависимости от величины периода упреждения, различают прогнозы краткосрочные, среднесрочные, долгосрочные и дальнесрочные. Однако в "количественном определении" последних царит неразбериха - в экономике, метеорологии, сельском хозяйстве (т.е. тех областях знания, в которых проблема надежного прогнозирования становится центральной) приняты свои стандарты "срочности". В экологии характерные времена многих процессов лежат в диапазоне от нескольких часов и суток (например, для популяции комаров) до нескольких веков (для ряда сукцессионных процессов в лесных биогеоценозах). Поэтому жесткая регламентация прогнозов по величине периода упреждения, измеренного в абсолютных временных единицах, в экологии бессмысленна. Понятия "срочности" экологических прогнозов относительны и зависят прежде всего от свойств изучаемой системы (процесса) и от детальности формулировки прогнозов по оси времени.

Критерием "срочности" экологического прогноза можно считать детальность его формулировки по оси времени. Прогнозы с периодом упреждения до 2-3 шагов будем называть краткосрочными, от 3 до 7 - среднесрочными, от 8 до 15 - долгосрочными. Однако такая классификация не учитывает свойств изучаемого процесса.

Если формулировка экологического прогноза содержит категорические утверждения о будущем состоянии системы, без каких бы то ни было указаний на степень неуверенности его осуществления, то такие прогнозы, так же как и в метеорологии (Груза, Ранькова, 1983), будем называть категорическими. В противном случае, т.е. когда вместе с формулировкой предсказываемого состояния системы указывается и некоторая мера неопределенности (неуверенности) его достижения (например, доверительный интервал), будем говорить о размытых (интервальных) прогнозах. Так, прогноз типа "в будущем году произойдет вспышка численности полевки" является категорическим, а прогноз типа "в будущем году вспышка численности полевки возможна с мерой принадлежности 0,74" - размытым.

Вслед за В.В.Налимовым (1983) будем делить экологические прогнозы на тривиальные и нетривиальные. О первых говорят в ситуации, когда предсказания относятся к ординарным проявлениям некой инерционной, устойчивой системы, а о вторых - когда речь идет об изменениях самой системы или о каких-то неординарных событиях в ней.

Как уже отмечалось, в зависимости от типа шкалы, в которой формируются прогнозы (т.е. по уровню детализации), различают прогнозы нормальные, ранговые, количественные.

В системологии выделяют структуру системы и ее поведение (Флейшман, 1982); в соответствии с этим имеет смысл различать прогнозы структуры экосистемы и прогнозы ее поведения (Розенберг, 1984). Например, исследования Н.С.Абросова с соавторами (1982) по экологическим механизмам сосуществования и видовой регуляции можно трактовать как прогнозы видовой структуры сообществ, а исследования по динамике численности популяций грызунов (Максимов, 1984) - как прогнозы поведения популяций мелких животных.

Часто математики строят абстрактные модели сообществ (или экосистем), основываясь только на априорных представлениях (Свирежев, Логофет, 1978; Базыкин, 1985 и мн.др.), и получают с их помощью качественный прогноз. Прогнозы, полученные с помощью подобных моделей, вслед за В.И.Беляевым (1978), будем называть априорными, а полученные с использованием эмпирической информации - апостериорными.

Различают прогнозы положительные и отрицательные (Беляев и др., 1986). Последние формируются теорией потенциальной эффективности сложных систем (Флейшман, 1982) и дают представление о том, каких состояний экосистема не может иметь в принципе при заданных ограничениях. Положительные прогнозы, наоборот, несут информацию только о возможных состояниях изучаемой системы.

Кроме того, выделяют прогнозы точечные и распределенные (Ивахненко, 1982), поисковые и нормативные (Прогностика. Терминология.., 1978; Большаков, 1983). Если в процессе прогнозирования изучаемая экосистема считается однородной, то говорят о

следующая страница >>