bigpo.ru
добавить свой файл
1


Профессиональное училище №51


Реферат

Предмет: Физика.

Тема: Спектры, спектральный анализ и виды излучения.


Подготовил:

Учащейся группы № 21

Белоусов Павел Михайлович

Проверил:

Ляшкова Людмила Васильевна


г.Березники, 2009 г.


Содержание

Введение…………………………………………………………………….……3

  1. Исторические сведения………………………………………………….……4

  1. Теория возникновения цветов

  1. Виды излучения………………………………….……………………………6

  1. Излучения атома

  2. Тепловое излучение

  3. Электролюминесценция

  4. Катодолюминесценция

  5. Хемилюминесценция

  6. Фотолюминесценция

  1. Типы спектров………………………………………….………..……………7

  1. Спектр

  2. Непрерывный спектр

  3. Линейчатый спектр

  4. Полосатый спектр

  1. Спектральный анализ и его применение………………………...….….……9

Заключение………………………………………………………………..….…10

Список используемой литературы……………………………………….....…11

Приложения………………………………………………………………..……12

Введение

Если сказать по-простому «спектр» это многоцветная полоса, получающаяся при прохождении светового луча через стеклянную призму или какую-либо другую преломляющую свет среду.

В природе мы можем наблюдать спектр, когда на небе появляется Радуга

Радуга — это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя.

Первый кто открыл спектр, был Исаак Ньютон. Он провел обычный опыт со стеклянной призмой и заметил разложение света на спектр.

Направив луч дневного света на призму, он увидел на экране различные цвета радуги. После увиденного он выделил из них семь основных цветов. Это были такие цвета как: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый (каждый охотник желает знать где сидит фазан). Ньютон выбрал лишь семь цветов по той причине, что были наиболее яркие, он также говорил, что в музыке всего семь нот, но сочетание их, различные вариации позволяют получить совершенно различные мелодии.

.

1. Исторические сведения

1.1 Теория возникновения цветов

Великий английский ученый Исаак Ньютон выполнил целый комплекс оптических экспериментов с призмами, подробно описав их в «Оптике», «Новой теории света и цветов», а также в «Лекциях по оптике». Ньютон убедительно доказал ложность представлений о возникновении цветов из смешения темноты и белого света. На основании проделанных опытов он смог заявить: «Никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных; количество света не меняет вида цвета». Ньютон показал, что белый свет не является основным, его надо рассматривать как составной (по Ньютону, «неоднородный»; по современной терминологии, «немонохроматический»); основными же являются различные цвета («однородные» лучи или, иначе, «монохроматические» лучи). Возникновение цветов в опытах с призмами есть результат разложения составного (белого) света на основные составляющие (на различные цвета). Это разложение происходит по той причине, что каждому цвету соответствует своя степень преломляемости. Таковы основные выводы, сделанные Ньютоном; они прекрасно согласуются с современными научными представлениями. Выполненные Ньютоном оптические исследования представляют большой интерес не только с точки зрения полученных результатов, но также и с методической точки зрения. Разработанная Ньютоном методика исследований с призмами (в частности, метод скрещенных призм) пережила века и вошла в арсенал современной физики. Приступая к оптическим исследованиям, Ньютон ставил перед собой задачу «не объяснять свойства света гипотезами, но изложить и доказать их рассуждениями и опытами». Проверяя то или иное положение, ученый обычно придумывал и ставил несколько различных опытов. Он подчеркивал, что необходимо использовать разные способы «проверить то же самое, ибо испытующему обилие не мешает».

2. Виды излучения

2.1 Излучения атома

Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов. Но, не зная, как устроен атом, ничего достоверного о механизме излучения сказать нельзя. Ясно лишь, что внутри атома нет света так же, как в струне рояля нет звука. Подобно струне, начинающей звучать лишь после удара молоточка, атомы рождают свет только после их возбуждения.

Для того чтобы атом начал излучать, ему необходимо передать энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам.

2.2 Тепловое излучение

Наиболее простой и распространенный вид излучения - тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или (молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет.

Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь примерно 12% всей энергии, выделяемой в лампе электрическим током, преобразуется в энергию света. Тепловым источником света является пламя. Крупинки сажи раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

2.3 Электролюминесценция

Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция.

2.4 Катодолюминесценция

Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминесценцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров.


2.5 Хемилюминесценция

При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемилюминесценцией.

2.6 Фотолюминесценция

Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения.

Явление фотолюминесценции широко используется в лампах дневного света. Советский физик С. И. Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными ярко светиться под действием коротковолнового излучения газового разряда. Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания.

3. Типы спектров

3.1 Спектр

Спектр (лат. spectrum от лат. spectare — смотреть) – это цветная картинка состоящая из семи цветов расположенных в строгом порядке друг за другом.

По характеру распределения значений физической величины спектры могут быть полосатыми, дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.

3.2 Непрерывный спектр

Сплошные спектры состоят из широкого диапазона длин волн. Эти спектры наблюдают в раскаленных твердых и жидких телах, а также в газах очень высокой плотности.

Солнечный спектр или спектр дугового фонаря является непрерывным (сплошным). Это означает, что в спектре представлены все длины волн. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также плотные газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом. Непрерывный спектр дает также высокотемпературная плазма.

3.3 Линейчатый спектр

Линейчатые спектры состоят из отдельных спектральных линий, соответствующих отдельным значениям длин волн. Линейчатые спектры наблюдают в раскаленных газах малой плотности.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет ярко желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени.

На спектроскопе также можно увидеть частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая из линий имеет конечную ширину.

3.4 Полосатый спектр

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда

4. Спектральный анализ и его применение


Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Поэтому, знакомясь с линейчатыми спектрами, мы тем самым делаем первый шаг к изучению строения атомов. Наблюдая эти спектры, ученые получили возможность "заглянуть" внутрь атома. Здесь оптика вплотную соприкасается с атомной физикой.

Главное свойство линейчатых спектров состоит в том, что длины волн (или частоты) линейчатого спектра какого-либо вещества зависят только от свойств атомов этого вещества, но совершенно не зависят от способа возбуждения свечения атомов. Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго-определенный набор длин волн.

На этом основан спектральный анализ - метод определения химического состава вещества по его спектру. Подобно отпечаткам пальцев у людей линейчатые спектры имеют неповторимую индивидуальность. Неповторимость узоров на коже пальца помогает часто найти преступника. Точно так же благодаря индивидуальности спектров имеется возможность определить химический состав тела.

С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества. Благодаря универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии.

В астрофизике под спектральным анализом понимают не только определение химического состава звезд, газовых облаков и т. д., но и нахождение по спектрам многих других физических характеристик этих объектов: температуры, давления, скорости движения, магнитной индукции.

Кроме астрофизики спектральный анализ широко применяют в криминалистике, для расследования улик, найденных на месте преступления. Также спектральный анализ в криминалистике хорошо помогает определять орудие убийства и вообще раскрывать некоторые частности преступления.

Еще шире спектральный анализ используют в медицине. Здесь его применение весьма велико. Его можно использовать для диагностирования, а также для того, чтобы определять инородные вещества в организме человека.

Спектральный анализ прогрессирует не только науку, но и общественную сферу человеческой деятельности.

Заключение

И так Спектр это цветная полоса, получающаяся при прохождении светового луча через стеклянную призму или какую-либо другую преломляющую свет среду

Из видов излучения мы узнали, что тепловое излучение это самый распространённый и простой вид излучения. Тепловыми источниками являются: Солнце, лампа накаливания, или пламя огня.

Электролюминесценция - это явление наблюдается при разряде в газах, при котором возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Например северное сияние, надписи на магазинах.

Католюминесценция - Это свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря католюминесценции светятся экраны электронно – лучевых трубок телевизоров.

Хемилюминесценция. При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света, причем источник света остается холодным. Например Кусок дерева, пронизанный светящейся грибницей, Рыба, обитающая на большой глубине.

Фотолюминесценция. Под действием падающего излучения, атомы вещества возбуждаются и после этого тела высвечиваются. Например, Лампа дневного света, елочные игрушки покрывают светящими красками.

По характеру распределения значений физической величины спектры могут быть полосатыми, дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.

Так же мы узнали что, спектральный анализ основан на методе определения химического состава вещества по его спектру.

С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества. Благодаря универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии.


Список используемой литературы


  1. Учебное Издание, Справочник школьника 5-11 классы

  2. Свободная электронная энциклопедия «ВИКИПЕДИЯ» http://ru.wikipedia.org

  3. Физика. 11 класс Г. Я. Мякишев, Б. Б. Буховцев



Приложения

Рис. 2.2 Тепловое излучение



Лампа накаливания


Рис. 2.3 Электролюминесценция



Северное сияние


Рис. 2.4 Катодолюминесценция





Лучевая трубка телевизора

Рис. 2.5 Хемилюминесценция



Кусок дерева, пронизанный светящейся грибницей




Рыба, обитающая на большой глубине

Рис. 2.6 Фотолюминесценция



Лампа дневного света


Виды спектров


Рис. 3.2 Непрерывный спектр




Рис. 3.4 Полосатый спектр




Рис. 3.5 Линейчатый спектр




4 Спектральный анализ и его применение.





Лабораторная электролизная установка

для анализа металлов «ЭЛАМ».

Установка предназначена для проведения

весового электролитического анализа меди,

свинца, кобальта и др. металлов в сплавах

и чистых металлах.




Стационарно – искровые

оптико - эмиссонные спектрометры

«МЕТАЛСКАН –2500».

Предназначены для точного анализа

металлов и сплавов, включая цветные,

сплавы черных металлов и чугуны.