bigpo.ru
добавить свой файл
1




ЛИТЕРАТУРА


Акустические кристаллы. Справочник / Блистанов А.А., Бондаренко В.С., Чкалова В.В. и др., под ред. М.П.Шаскольской. М.: Наука, 1982. 632 с.

Александров К.С., Продайвода Г.Т. Анизотропия упругих свойств минералов и горных пород. Новосибирск: Изд. сиб. отд. РАН, 2000. 354 с.

Андриевский А.Р., Спивак И.И. Прочность тугоплавких соединений и материалов на их основе. Челябинск: Металлургия, 1989. 368 с.

Бацанов С.С. Диэлектрические методы изучения химической связи и концепция электроотрицательности // Успехи химии, 1982. Т. 51, вып. 7. С. 1201-1224.

Бацанов С.С. Экспериментальные основы структурной химии. М. : Изд-во стандартов. 1986. 240 с.

Бацанов С.С. Атомные радиусы элементов //ЖНХ, 1991. Т. 36. С. 3015-3037.

Бацанов С.С. Структурная химия. Факты и зависимости. М.: Диалог-МГУ, 2000. 292 с.

Бацанов С.С. Связевые радиусы атомов в ионных кристаллах //ЖНХ, 2003. Т. 48. № 4. С. 616-619.

Бацанов С.С. Молекулярные рефракции кристаллических неорганических соединений // ЖНХ, 2004. № 4. С. 617-625.

Бацанов С.С., Звягина Р.А. Интегралы перекрывания и проблема эффективных зарядов. Новосибирск: Наука, сиб. отд., 1966. 386 с.

Белов Н.В. Структура ионных кристаллов и металлических фаз. М.: Изд-во АН СССР, 1947. 237 с.

Белов Н.В. Очерки по структурной минералогии. М.: Недра, 1976. 344 с.

Бергер М.Г. Терригенная минералогия. М. : Недра. 1986. 227 с.

Богданов О.С., Зуев В.В. О кристаллохимической оценке магнитных, электрических и гравитационных свойств минералов // Обогащение руд, 1991. № 6. С. 12-16.

Бокий Г.Б. Кристаллохимия. М.: Наука, 1971. 400 с.

Булах А.Г., Булах К.Г. Физико-химические свойства минералов и компонентов гидротермальных растворов. Л.: Недра, 1978. 167 с.

Волков А.И., Жарский И.М. Большой химический справочник. Минск: Современная школа, 2005. 608 с.

Гиллеспи Р. Геометрия молекул. М.: Мир, 1975. 278 с.

Гиллеспи Р., Харгиттаи И. Метод отталкивания электронных пар валентной оболочки и строение молекул. М.: Мир, 1992. 296 с.

Годовиков А.А. Минералогия. М.: Недра, 1983. 647 с.

Григорович В.К. Металлическая связь и структура металлов. М. : Наука, 1988. 296 с.

Григорьев Д.П. Основы конституции минералов. М.: Недра, 1966. 74 с.

Диков Ю.П., Брытов И.А., Ромашенко Ю.Н., Долин С.П. Особенности электронного строения силикатов. М.: Наука, 1979. 128 с.

Доливо-Добровольский В.В. О так называемой структурной рыхлости минералов и связи ее с межатомными расстояниями в кристаллах // ЗВМО, 1973, ч. 102, № 6. С. 730-735.

Доливо-Добровольский В.В. Об ошибочных и дискуссионных трактовках кристаллических структур некоторых минералов // ЗВМО, 1999. № 3. С. 121-126.

Дорошенко М.В., Башлыкова Т.В. Технологические свойства минералов. Справочник для технологов. М.: Изд-во «Теплоэнергетик», 2007. 296 с.

Евзикова Н.З., Ициксон Г.В. Структурная плотность решетки как показатель условий минералообразоваания // ЗВМО, 1969, ч. 98, № 2. 129-149.

Евзикова Н.З. О распределении минералов по энергетическим уровням рудосферы // Минералогия  основа использования комплексных руд. Тезисы докладов годичного собрания Минералогического общества при РАН  СПб, 2001. С. 12-15.

Земан И. Кристаллохимия. М.: Мир, 1969.155 с.

Зуев В.В. Новое кристаллохимическое уравнение твердости минералов // Обогащение руд, 1987. № 5. С. 26-29.

Зуев В.В. Об оценке энтальпии сложных минералов с разносортными катионами и анионами // Геохимия, 1988, № 7. С. 961-967.

Зуев В.В. Конституция и свойства минералов. Л. : Наука, 1990. 279 с.

Зуев В.В. Энергоплотность, свойства минералов и энергетическое строение Земли. СПб. : Наука, 1995. 128 с.

Зуев В.В. Возможно ли вещество тверже алмаза? // Обогащение руд, 1997, № 1. С.30-34.

Зуев В.В. Закономерная связь физических свойств минералов и других твердых кристаллических тел с их энергией сцепления атомных остовов и связующих электронов // Обогащение руд, 2002. № 5. С. 42-47.

Зуев В.В. Развитие геоэнергетической теории Ферсмана в рамках остовно-электронной концепции строения минералов // Обогащение руд, 2005, № 1. С. 27-31

Зуев В.В. Конституция, свойства минералов и стоение Земли (энергетические аспекты). СПб.: Наука, 2005.402 с.

Зуев В.В. Новый метод оценки энергетических коэффициентов атомных остовов и связующих электронов в кристаллических соединениях // Обогащение руд, 2007а. № 1. С. 29-35.

Зуев В.В. Приложение модифицированной системы энергетических коэффициентов А.Е.Ферсмана к остовно-электронным моделям конституции минералов // Обогащение руд, 2007б. № 6. С. 25-30.

Зуев В.В., Мочалов Н.А., Щербатов А.И. Физические свойства минералов и других твердых тел как функция их энергоплотности // Обогащение руд, 1998, №4. С. 22-28.

Зуев В.В., Аксенова Г.Я., Мочалов Н.А., Николайчук В.Ф., Щерабатов А.И. Использование величин удельных энергий кристаллических решеток минералов и неорганических кристаллов для оценки их свойств // Обогащение руд, 1999, № 1-2. С. 48-53.

Зуев В.В., Денисов Г.А., Мочалов Н.А. и др. Энергоплотность как критерий оценки свойств минеральных и других кристаллических веществ. М.: Полимедиа, 2000. 352 с.

Корниевский В.Г. Редкий случай мирмекитовых срастаний ильменита и диопсида // ЗРМО, 2007. № 2. С. 56-62.

Коулсон Ч.А. Валентность. М. : Мир, 1965. 426 с.

Кузнецов К.Е. К оценке самодиффузии в бинарных соединениях. Физико-химия эндогенных процессов. Изд-во АН СССР, сиб. отд. Институт земной коры. Новосибирск, 1979. C. 129-162.

Куликов Б.Ф., Зуев В.В., Вайншенкер И.А. Минералогический справочник технолога-обогатителя. Л.: Недра, 1978. 206 с.

Лазарев А.Н., Миргородский А.П., Смирнов М.Б. Колебательные спектры и динамика ионно-ковалентных кристаллов. Л.: Наука, 1985. 120 с.

Лебедев В.И. Основы энергетического анализа геохимических процессов. Л.: Изд-во ЛГУ, 1957. 342 с.

Лебедев В.И. Ионно-атомные радиусы и их значение для геохимии и химии. Л.: Изд-во ЛГУ, 1969. 156 с.

Лебедева С.И. Определение микротвердости минералов. М.: Изд-во АН СССР, 1963. 124 с.

Макаров Е.С. Новые кристаллохимические аспекты распределения переходных металлов группы железа в сульфидных и окисных минералах // Геохимия, 1981. № 8. С. 1254-1257.

Мамыров Э.М. Дифференциация наиболее распространенных веществ литосферы по удельной энергии атомизации. Фрунзе: Илим, 1989. 163 с.

Мамыров Э.М. Удельная энергия атомизации и физические свойства минералов и горных пород. Бишкек: Илим, 1991. 236 с.

Мартынов А.И., Бацанов С.С. Новый подход к определению электроотрицательности атомов // ЖНХ. Т. 25. № 12, 1980. С. 3171-3175.

Марфунин А.С. Введение в физику минералов. М.: Недра, 1974. 324 с.

Матяш И.В. Структура минералов и эффективный заряд ионов // Минералогический журнал, 1991, т. 13, № 6. С. 23-34.

Минералогическая энциклопедия (Под ред. К.Фрея). Л.: Недра, 1985. 512 с.

Минералогический справочник технолога-обогатителя / Б.Ф.Куликов, В.В.Зуев, И.А.Вайншенкер, Г.А.Митенков. 2-е изд., перераб. и доп. Л.: Недра. 1985. 264 с.

Муханов В.А. Взаимосвязь твердости веществ с их строением и термодинамическими характеристиками // Тр. ВНИИСИМС. Александров, 1998. Т. 15. С. 145-154.

Наковник Н.И. Отношение к последовательности минералообразования среднего атомного объема и атомно-ионной упаковки // ЗВМО, 1972, ч. 101, № 6.

Некрасов Б.В. Основы общей химии. Т. 2. М.: Химия, 1973. 688 с.

Нефедов И.И. Рентгеноэлектронная спектроскопия химических соединений: Справочник. М.: Химия, 1984. 256 с.

Ормонт Б.Ф. Введение в физическую химию и кристаллохимию полупроводников. М.: Высшая школа, 1973. 655 с.

Островский И. А. Изобарные потенциалы фторапатита при высоких параметрах и антагогнизм апатита и алмаза // Геохимия, 1994. № 10. С. 1520-1524.

Пенкаля Т. Очерки кристаллохимии. Л.: Химия, 1974. 296 с.

Петрофизика. Справочник. Кн. 1. Горные породы и полезные ископаемые / Под ред. Н.Б.Дортман. М.: Недра, 1992. 391 с.

Поваренных А.С. Твердость минералов. Киев : Изд-во АН УССР, 1963. 304 с.

Поваренных А.С. Кристаллохимическая классификация минеральных видов. Киев: Наукова думка, 1966. 547 с.

Поверхностные свойства твердых тел. Под ред. М. Грина. М.: Мир, 1972. С. 193-316.

Полинг Л. Общая химия. М. : Мир, 1974. 846 с.

Приходько Э.В. Система неполяризованных ионных радиусов и ее использование для анализа электронного строения и свойств веществ. Киев: Наукова думка, 1973.

Рамдор П. Рудные минералы и их срастания. М.: Мир, 1962. Изд-во ИЛ. 1132 с.

Регель А.Р., Глазов В.М. Периодический закон и физические свойства электронных расплавов. М.: Наука, 1978. 309 с.

Резницкий Л.А. Кристаллоэнергетика оксидов. М.: Диалог-МГУ, 1998. 146 с.

Самсонов Г.В., Виницкий И.М. Тугоплавкие соединения (справочник). 2-е изд. М.: Металлургия, 1976. 560 с..

Сауков А.А. Геохимия. М.: Гос. изд. геол. лит-ры, 1950. 347 с.

Свойства неорганических соединений. Справочник /Ефимов А.И. и др. Л.: Химия, 1983. 392 с.

Свойства, получение и применение тугоплавких соединений. Справочник / Под ред. Т.Я.Косолаповой. М.: Металлургия, 1986. 928 с.

Свойства элементов: Справочник. Ч. 1. Физические свойства. 2-е изд. М.: Металлургия , 1976. 600 с.

Свойства элементов: Справ. изд. в 2-х кн. Под ред. М.Е.Дрица. М.: Металлургия, 1997.

Семенов К.П. Электронно-ионные структуры кристаллов. Тр. V международной конференции «Кристаллы: рост, свойства, реальная структура, применение». Том 1. Александров: ВНИИСИМС, 2001. С. 560-603.

Смольянинов Н.А. Практическое руководство по минералогии. Изд. 2-е. М.: Госгеолтехиздат, 1955. 432 с.

Современная кристаллография (в четырех томах). Том 2. Структура кристаллов. Вайнштейн Б.К., Фридкин В.М., Инденбом Л.М. М.: Наука, 1979. 360 с.

Сокольский Ю.М. Ультразвуковые и магнитные поля в химической технологии / ЛенНИИгипрохим. Л. , 1992. 196 с.

Справочник физических констант горных пород. Науки о Земле. Т. 21. / Под ред. С.Кларка. М.: Мир, 1969. 543 с.

Сюше Ж.П. Физическая химия полупроводников. М.: Металлургия, 1969. 224 с.

Тимесков В.А. Новый метод расчета эффективных зарядов атомов в кристаллах минералов // Физика минералов. Вып 2. Казань: Изд-во Казанск. ун-та, 1969. С. 37-48.

Урусов В.С. Энергетическая кристаллохимия. М. : Наука, 1975. 335 с.

Урусов В.С. Теоретическая кристаллохимия. М.: Изд-во МГУ, 1987.275 с.

Урусов В.С., Оганов А.Р., Еремин Н.Н. Компьютерное моделирование структуры, свойств и устойчивости модификаций Al2SiO5. I. Ионное приближение // Геохимия, 1998, N 5, С. 456-474.

Уэллс А. Структурная неорганическая химия (в 3-х томах). М.: Мир, 1987-1988.

Фекличев В.Г. Диагностические константы минералов. М. : Недра, 1989. 479 c.

Ферсман А.Е. Избранные труды. Т. IV. М.: Изд-во АН СССР, 1958. 588 с.

Физико-химические свойства окислов / Г.В.Самсонов, А.Л.Борисова, Т.Г.Жукова и др.: Справочник. М.: Металлургия, 1978. 472 с.

Харрисон У. Электронная структура и свойства твердых тел. Т. 2. М.: Мир, 1983. 332 с.

Эмсли Дж. Элементы. М.: Мир, 1993. 256 с.

Юшкин Н.П. Механические свойства минералов. Л.: Наука, 1971. 282 с.

Яковлев В.М. Простейшее выражение работы выхода электрона // Поверхность. Физика, химия, механика. 1994, № 12. С. 18-21.

Яковлев В.М. Новый метод оценки электроотрицательности атомов // ЖНХ, 2002. № 10. С. 1644-1646.

Bent H.A. Localized molecular orbitals and bonding in inorganic compounds // Fortsch. Chem.. Fortsch. 1970. Bd. 14. H. 1. S. 1-48.

Blaha P., Redinger J., Schwarz K. Energy bands and electron densities of Li 3N // Z. Phys. B. Condenced Matter, 1984. Vol. 57, N 4, P. 273-279.

Boldish S.I., White W.B. Optical band gaps of ternary sulfide minerals // Amer. Mineral., 1998. V. 83. P. 865-871.

Bradley D. Whats harder than diamand? // New scientist, 1993, vol. 137, № 1865. P. 22-23.

Chermak J.A., Rimstidt J.D. Estimation of the thermodynamic properties (Gf0 and Hf0) of silicate minerals at 298 K from the sum of polyhedral contributions // Amer. Mineral., 1989. V. 74. № 9/10. Р. 1023-1031.

Cohen M.L. The Fermi atomic pseudopotential. // Amer. Journ. Phys., 1984, v. 52, № 8. P. 695-703.

Dawson B. The covalent bond in diamond. // Proc. Roy. Soc., 1967, v. A298. P. 264-288.

Fuyino K., Sasaki S., Takeuchi Y, Sadanaga R. X-Ray determination of electron distribution in forsterite, fayalite and tephroite // Acta Crystallogr. 1981. vol. B77. P. 513-518.

Görlich E. The effective nuclear charges and their relation to the Pauling’s electronegativity scale // Z. phys. Chemie. Leipzig, 1989. H. 270. № 2. S. 384-388.

Harris S., Liang K.S. Electronic structure of RuS2 // Phys. Rev. B., 1985. Vol. 32. № 6. P. 3745-3752.

Jones R.A., Nesbitt H.W. XPS evidence for Fe and As oxidation states and electronic states in loellingite (FeAs2) // American mineralogist, 2002. V. 87. P. 1692-1698.

Julg A. An empirical relation between hardness and bond-ionicity in a crystal // Phys. Chem. Minerals, 1978. Vol. 3. P. 45-53

Konno M., Mikami-Kido M. Nemperature of pressure-induced structure changes of a spin crossover Fe(II) complexes: [Fe(bpy)2] // Bull. Chem. Soc. Jpn., 1991. Vol. 64. № 2. P. 339-345.

Kordes E. Berechnung der Wirkungsradien der edelgasähnlichen Ionen vermittels der ultravioletten Spektren der zugehörigen Edelgase // Z. anorg. Allg. Chem., 1964. H. 327. № 3-4. S. 215-223.

Li Y.P., Ching W.Y. Band structures of all polycrystalline forms of silicone dioxide // Phys. Rev. B, 1985. V. 31. № 4. Р. 2172-2179.

Liu A.Y., Cohen M.L. Prediction of new low compressibility solids // Science, 1989. V. 245. P. 841-842.

Marfunin A.S. Advanced mineralogy. Vol. 1. Springer-Verlag, Berlin, 1994.

Matsuhata H., Gjonnes J., Tafto J. A study of the structure factors in rutile type SnO2 by high-energy electron diffraction // Acta Cryst. 1994, A 50, P. 115-123.

Nada R., Catlow C.R.A., Dovesi R., Pisani C. An Ab-Initio Hartree-Fock study of -Quartz and Stishovite // Phys. Chem. Minerals, 1990. Vol. 17. № 4. P. 353-362.

Nover G., Will G. Structure refinements of seven natural olivine crystals and the influence of oxygen partial pressure on the cation distribution // Zeit. Kristallogr., 1981. Vol. 155. P. 27-45.

Ohtani E., Kagawa N., Fujino K. Stability of majorite (Mg,Fe)SiO3 at high pressure and 1800ºC // Earth and Planetary Science Lett., 1991. V. 102. P. 158-166.

Pauling L. The nature of the chemical bond. 3 edition, Cornell University Press, Ithaca - New York, 1960. 644 p.

Pauling L. Cohesive energies of tetrahedrally coordinated crystals // Phys. Rev. Letts, 1969. V. 23. P. 480-482.

Phillips J. C. Resonating-bond theory of tetrahedrally coordinated crystals // Phys. Rev. Letts, 1969. V. 23. № 10. P. 482-484.

Pillai K.S. Relationship between hardness and ionicity in a crystal // Ind. Journ. Pure Appl. Phys., 1982. vol. 20. P. 46-48.

Schobert H., Dorner B. Lattice dynamics of berlinite (AlPO4): a comparative study with quartz (SiO2) // J. Phys.: Codens. Matter, 1994. V. 6. № 28. P. 5351-5372.

Shen Guo-Yin, Zhao Min-Guang. Analysis of the spectrum of Fe2+ in Fe-pyrope garnet // Phys. Rev. B, 1984. Vol. 30. № 7. p. 3691-3703.

Sherman D.M. Electronic structures of iron oxides and silicates. A.S.Marfunin Advanced mineralogy. Springer-Verlag, 1994. Vol. 1. P. 327-339.

Sousa C., Illas F. Can corundum be described as an ionic oxide? // J. Chem. Phys., 1993. Vol. 99. № 9. P.6818-6823.

Van der Wal R.J., Vos A. Conflicting results for the deformation properties of forsterite, Mg2SiO4 //Acta Cryst. B 43,1987. P. 132-143.

Vieillard Ph. Prediction of enthalpy of formation based on refined crystal structures of multisite compounds: Parts 1 and 2 // Geochim. et Cosmochim. Acta, 1994, vol. 58, № 19. P. 4049-4107.

Xu Yong, Schoonen A.A. The absolute positions of conduction and valence bands of selected semiconducting minerals // Amer. Mineral., 2000. Vol. 85. P. 543-556.

Yang W.Y., Parr R.G., Uytterhoeven L. New relation between hardness and compressibility of minerals // Phys. Chem. Minerals, 1987. Vol. 15. P. 191-195.

Ye Danian, Zhang Jinmin. Haphazard packing of unequal spheres // Chin. Journ. Geochem., 1991. Vol. 10. № 2. P. 180-187.

Yourdshahyan Yashar. Alumina (Al2O3) and oxidation of aluminium: a first principle study // Göteborg, 1999. Paper III. P. 13.

Zhang Yonghe. Electronegativities of elements in valence states and their application. 1. Electronegativities of elements in valence states // Inorg. Chem., 1982. Vol. 21. N 11. P. 3886 -3889.

Zuyev V.V. Effects of cation electronegativity differences in the enthalpies of formation of compound crystals from oxides. // Geochemistry International (Washington), 1987, vol. 24. P. 91-100.



ЗАКЛЮЧЕНИЕ


Суммируя материалы данной монографии, завершающей разработку остовно-электронной кристаллохимии (ОЭК) минералов, попытаемся произвести ее оценку в двух аспектах  теоретическом и прикладном.

В плане теоретическом остовно-электронная кристаллохимия предлагает простое, естественное, но вместе с тем достаточно современное объяснение природы любых типов химических связей в минералах на основе взаимодействия положительных атомных остовов и связующих электронов. Причем эта в общем-то тривиальная идея не просто декларируется, а доводится (что предпринято впервые) до энергетического обоснования  построением соответствующих моделей и предложением принципиально нового энергетического параметра вещества W (МДж/моль) энергии сцепления атомных остовов и связующих электронов (электридов) с выводом соответствующих формул. Основная из них W = Ea + In (Ea  энергия атомизации соединения, In  сумма потенциалов ионизации образования атомных остовов из нейтральных составляющих атомов). Вторая формула, практически равноценная первой,  W = энергетических коэффициентов (ЭК) атомных остовов и связующих электронов. Эта формула была выведена нами из геоэнергетических разработок академика А. Е. Ферсмана, что позволило продемонстрировать их преемственность, актуальность и научную значимость в современной кристаллохимии минералов. Успешное использование модернизированной системы энергетических коэффициентов Ферсмана в остовно-электронной кристаллохимии позволяет судить о фактическом возрождении и жизнеспособности его энергетических идей, интерес к которым в последнее время стал явно ослабевать вплоть до отрицания их полезности в современной науке. Между тем в остовно-электронной кристаллохимии идея энергетических коэффициентов Ферсмана заняла подобающее ей достойное место.

На базе теоретического аппарата ОЭК построены схемы остовно-электронного строения для порядка 700 минералов (с включением также многих искусственных кристаллических соединений) и выполнены для них оценки энергий остовно-электронного взаимодействия (таблица 2.3). Для осуществления этого большого объема работ была решена проблема научного обоснования и определения истинных валентных состояний атомов в гомоатомных и гетероатомных кристаллах  как для металлических (или катионных), так и для неметаллических (или анионных) компонентов соединений. Параллельно с указанной была решена также проблема количественной оценки доли металлического взаимодействия в сульфидных рудных минералов и их аналогах. Заметим, что обе эти проблемы вяляются, по сути дела, белыми пятнами в современной кристаллохимии.

В рамках ОЭК большое внимание уделено ключевому вопросу кристаллохимии  анализу размеров атомов в минералах (глава 3). С помощью установленной взаимосвязи эффективных зарядов атомов и их размеров выполнен большой объем соответствующих вычислений, касающихся именно реальных радиусов атомов в минералах, рассмотрены вопросы оценки пограничной межатомной плотности в кристаллах, взаимного влияния атомов, кристаллических электроотрицательностей и др.

По сравнению с нашими ранее опубликованными данными (Зуев, 1990) несколько модифицирована методика расчета ионности связей и эффективных зарядов атомов в минералах. Это связано с уточнением валентных состояний неметаллов в ряде гетероатомных минералах (OVI  OIV, ClVII  ClV, FVII  FIII и т.д.). В частности, как показано, в большинстве координационных оксидных минералах типа BeO, MgO, Al2O3, Fe2O3, Fe3O4, ThO2, Mg2SiO4 и многих других кислород реализует 4-х валентное состояние, выступая в виде остовов [O4+], а не в виде остовов [O6+] с полным использованием в связях всех шести валентных электронов (2s22p4), как это предполагалось ранее в наших и других работах.

В связи с этим возникает естественный вопрос, можно ли принимать, как корректные, ранее выполненные оценки эффективных зарядов атомов (Q) в указанных и других минералах согласно (Зуев, 1990)? Положительный ответ на этот вопрос дают на примере форстерита Mg2SiO4 следующие табличные данные:


Связь

ZM/КЧ

ZO/КЧ

q,e

rc(M),Å

rc(O),Å

FM

FO

Q атомов

MgO

2/6

6/4

1,68

1,52

0,60

0,144

4,17

Mg2+1,66Si+1,8×

O41,28

SiO

4/4

6/4

2,96

1,03

0,60

0,94

4,17

MgO

2/6

4/4

1,23

1,52

0,60

0,144

2,78

Mg2+1,64Si+1,67×

O41,24

SiO

4/4

4/4

2,31

1,03

0,60

0,94

2,78


Здесь первый вариант расчета Q атомов (вторая и третья строки таблицы) с остовами [O6+] взят из книги (Зуев, 1990, табл. 3.9), а второй вариант расчета (четвертая и пятая строки) соответствует принятию в форстерите для кислорода остовов [O4+]. Из этих данных следует, что при замене в форстерите [O6+][O4+] одновременно происходит уменьшение зарядов связей MgO6 и SiO4 (соответственно 1,681,23 и 2,962,31) и силовых остовных параметров кислорода FO (4,172,78). И в результате по принятой в (Зуев, 1990) методике расчета эффективные заряды атомов в форстерите практически сохраняются. Аналогичные расчеты для многих других минералов подтвердили полученные для форстерита результаты.

Таким образом, несколько модифицированная в данной монографии методика расчета эффективных зарядов атомов в минералах приводит к весьма близким к ранее полученным результатам (Зуев, 1990), которыми в принципе можно до сих пор пользоваться. Это тем более справедливо, учитывая неизбежную погрешность оценки Q атомов в обоих приводимых примерах в случае изменения ковалентных радиусов атомов в связях и других кристаллохимических параметров.

В прикладном аспекте  предлагаемые в данной монографии новые энергетические подходы (главы 4 и 5) дают, как нам представляется, исследователям полезные методики объяснения, оценки и прогнозирования свойств твердых тел. Речь, по сути дела, идет о предоставленной возможности, используя энергетические параметры (глава 2, таблица 2.3) и выведенные зависимости (глава 4), количественно характеризовать весьма широкий спектр самых разнообразных физико-химических свойств минералов (и других материалов)  механических, термических, упругих, поверхностных, эмиссионных, электрических, полупроводниковых и многих других. И в этом смысле данная монография может рассматриваться в качестве своеобразного справочника по кристаллоэнергетике и свойствам минералов и других твердых тел.

Следует заметить, что определение многих свойств твердых тел требует использования сложной, нередко весьма дорогостоящей аппаратуры, что в современных условиях бывает затруднительно. Поэтому возможность оценки этих свойств на основе соответствующих энергетических параметров вполне оправдана и целесообразна.

Подчеркнем, что речь здесь идет именно о теоретической оценке свойств минералов, вытекающих из их электронного строения, химических связей и энергии межатомного взаимодействия. Необходимо признать, что рассчитываемые по предлагаемым формулам величины, характеризующие те или иные свойства вещества, являются ориентировочными, имеют оценочный характер и в дальнейшем по мере получения соответствующих экспериментальных данных должны уточняться.

Впрочем, следует иметь в виду, что приводимые в главах 4 и 5 формулы были выведены на основе колоссального объема справочного материала по свойствам минеральных и других веществ, включая свойства, полученные с помощью различных экспериментальных методов. Поэтому разработанные энергетические подходы к оценке свойств твердых тел в определенном смысле являются полуэмпирическими.

Представляет теоретический и практический интерес рассмотренные в главе 6 критерии энергетического контроля процессов гипогенного и гипергенного минералообразвания.

По мнению автора основная идея данной монографии заключается в демонстрации тех возможностей, которые открываются при использовании в современной кристаллохимии новых энергетических подходов к исследованию вещества  как природного (минералы, руды, горные породы), так и искусственно создаваемого человеком.

В чем новизна и значение предлагаемого нового подхода к кристаллохимии минералов? Как известно, традиционная кристаллохимия постулирует, что строительными элементами кристаллов являются атомы или ионы, энергия взаимодействия которых описывается соответственно понятиями энергии атомизации и энергии кристаллической ионной решетки. Разработанный нами остовно-электронный подход (остовно-электронная кристаллохимия), детализируя и углубляя проблему межатомного взаимодействия, рассматривает кристалл (и любое химическое соединение вообще) изначально состоящим из атомных остовов (выполняющих функцию катионов) и связывающих их валентных электронов (выполняющих функцию анионов), энергия взаимодействия которых, как оказалось, может количественно характеризовать весьма широкий спектр свойств соединений. Построенные в монографии графики многочисленных соответствующих корреляций полностью подтверждают справедливость этого тезиса.

Автор убежден, что внедрение в практику предлагаемых новых энергетических подходов, пока не нашедших широкого применения, имеет хорошие перспективы. Здесь уместно заметить, что именно в рамках разработанных нами энергетических подходов к оценке свойств кристаллов удалось поставить вопрос о принципиальной возможности существования веществ тверже алмаза.