bigpo.ru
добавить свой файл
1 2 3


На правах рукописи




Сираева Зульфира Юнысовна


БИОПРЕПАРАТ ДЛЯ СТИМУЛЯЦИИ РОСТА

И ЗАЩИТЫ РАСТЕНИЙ ОТ БОЛЕЗНЕЙ НА ОСНОВЕ

BACILLUS AMYLOLIQUEFACIENS ВКПМ В-11008


03.02.03 – микробиология


Автореферат
диссертации на соискание ученой степени
кандидата биологических наук


Казань – 2012

Работа выполнена на кафедре микробиологии биолого-почвенного факультета
ФГАОУВПО «Казанский (Приволжский) федеральный университет»


Научный руководитель:

кандидат биологических наук, доцент – Захарова Наталия Георгиевна


Официальные оппоненты:

Багаева Татьяна Вадимовна – доктор биологических наук, профессор, заведующая кафедрой биотехнологии Казанского (Приволжского) федерального университета, Казань;


Дегтярева Ирина Александровна – доктор биологических наук, заведующая лабораторией агроэкологии и микробиологии государственного научного учреждения "Татарский научно-исследовательский институт агрохимии и почвоведения" Российской академии сельскохозяйственных наук, Казань.


Ведущая организация: ГНУ Татарский научно-исследовательский институт сельского хозяйства Россельхозакадемии, Казань.


Защита состоится « 15 » ноября 2012 г. в 13.00ч. на заседании диссертационного совета Д 212.081.08 при ФГАОУВПО «Казанский (Приволжский) федеральный университет» по адресу: 420008, г. Казань, ул. Кремлевская, д. 18, главное здание, ауд. 211.

Факс 8(843) 238-71-21, 233-78-40. E-mail: zsiraeva@yandex.ru


С диссертацией можно ознакомиться в научной библиотеке им. Н.И. Лобачевского Казанского (Приволжского) федерального университета по адресу: г. Казань, ул. Кремлевская, д. 35.


Автореферат разослан «___» ___________ 2012 г.


Ученый секретарь

диссертационного совета

дrectangle 5октор биологических наук Абрамова З.И.

Актуальность. Ведущий вклад в мировой экологический кризис по загрязненности почв и сельскохозяйственных продуктов питания вносит массовое применение пестицидов и минеральных удобрений (Соколов и др., 2010; Pitann et al., 2009; Frossard et al., 2009). Вместе с тем, в условиях сложной фитосанитарной ситуации на посевах сельскохозяйственных культур, значительной пораженности посевного и посадочного материала и инфицированности пахотных земель фитопатогенными микроорганизмами полный отказ от использования средств защиты растений и агрохимикатов невозможен (Захаренко, 2012; Hajihasani et al., 2012). Распространение таких опасных болезней, как корневые гнили, мучнистая роса, ржавчина, фузариоз, пятнистости различной этиологии, фитофтороз, бактериозы, часто носит эпифитотийный характер и приводит к чрезвычайно высоким потерям урожая, а заселение почвы комплексами токсинообразующих грибов сопровождается порчей продукции (Говоров и др., 2011; Гагкаева и др., 2011; Торопова и др., 2011; Miller et al., 2009; Petter & McMullen, 2010; Hajihasani et al., 2012).

Однако высокая стойкость пестицидов, неспецифичность их действия и накопление в окружающей среде токсических остатков неизбежно приводит к глубоким изменениям в экосистемах: формированию устойчивых рас возбудителей болезней (Чекмарев, 2012; Heimbach, 2010); уменьшению численности полезных членов микробиоты природных биоценозов (Сысоева и др., 2010); снижению биологической активности почвы (Турусов и др., 2010; Mikanova & Šimon, 2009).

В сложившихся условиях мировое сельскохозяйственное производство ориентировано на экологизацию (Bigler, 2010; Pérez-García et al., 2011; Yin et al., 2011; Mohammadi, 2012). Достигнутый к настоящему времени уровень биологизации растениеводства варьирует в отдельных странах от 1.5-2.0 (США) до 9.0-10.0% (Швеция) (Kabaluk et al., 2010). В ряде стран Западной Европы на значительных площадях сельхозугодий реализуется программа полного отказа от применения средств химической защиты или предоставления биометоду значительных преимуществ (Andermatt, 2010; Gessler et al., 2010).

Отставание России в области биологической защиты растений от развитых стран, по мнению исследователей, велико (Говоров и др., 2011; Захаренко, 2011а; Dzun, 2009). В «Концепции развития аграрной науки и научного обеспечения агропромышленного комплекса Российской Федерации на период до 2025 года», принятой РАСХН, важное значение отводится созданию инновационных биопрепаратов по защите растений, которые позволят снизить пестицидную нагрузку на единицу площади и содержание остаточных количеств пестицидов в продукции растениеводства, сохранить биоразнообразие, стабилизировать фитосанитарную обстановку, сократить уровень потерь урожая и увеличить уровень рентабельности производства (Гончаров, 2011; Говоров и др., 2011; Санин и др., 2012).

Одним из наиболее перспективных направлений в борьбе с возбудителями заболеваний растений является использование биопрепаратов на основе бактерий из рода Bacillus. В настоящее время известен ряд препаратов на основе бацилл (фитоспорин-М, бактофит, гамаир, интеграл и другие), однако в некоторых случаях их применение характеризуется недостаточной фунгицидной активностью против корневых и прикорневых гнилей (Зазимко и Найденов, 2009; Саранцева и др., 2011; Курылева и Фатыхов, 2012), листостеблевых болезней (Зазимко и Долженко, 2011), неспецифической плесневой микрофлоры (Злотников и др., 2007; Саранцева и др., 2011), а также сдвигом равновесия в сообществе микроорганизмов в сторону увеличения возбудителей болезней, сокращению численности сапрофитной почвенной микробиоты, что негативно воздействует на фитосанитарное состояние почвы и снижает урожайность (Кравец и др., 2010; Зазимко и Долженко, 2011).

Самым существенным ограничением многих используемых, в том числе бациллярных, биопрепаратов в рамках экологического земледелия является их функциональная моно- или дивалентность. Вместе с тем, представляет интерес с точки зрения современных агротехнологий применение в сельскохозяйственном производстве биопрепаратов комплексного действия, обладающих несколькими видами полезной активности (фунгицидной, рострегулирующей, азотфиксирующей, фосфатмобилизующей, позитивным действием на показатели плодородия почвы) (Петров и Чеботарь, 2011; Todd et al., 2010; Pérez-García et al., 2011; Mohammadi, 2012).

В связи с вышеизложенным, целью настоящей работы явилось создание и обоснование эффективности применения в сельскохозяйственном производстве биопрепарата комплексного действия на основе бактерий из рода Bacillus.

В соответствии с поставленной целью решались следующие задачи:

1. Выделить региональные штаммы бактерий из рода Bacillus и отобрать штамм, обладающий антагонистической активностью по отношению к фитопатогенным микромицетам, способностью синтезировать ферменты (хитиназу, фосфатазу, нитрогеназу), не проявляющий токсического действия по отношению к растительным и животным объектам.

2. Разработать технологию получения жидкой препаративной формы биопрепарата с использованием в качестве источника сырья отходов промышленных производств и подобрать специальные компоненты, обеспечивающие сохранение жизнеспособности штамма-продуцента биопрепарата и его активностей в процессе хранения.

3. Определить влияние биопрепарата на показатели биологической активности почвы и ее плодородие (активность почвенных ферментов, способность к мобилизации фосфатов из труднорастворимых соединений фосфора и нитрогеназную активность почвы).

4. Установить уровень пораженности семян различных сортов яровых зерновых культур фитопатогенными микроорганизмами до и после обработки зерен биопрепаратом.

5. Определить влияние химических фунгицидов, инсектицидов и гербицидов на жизнеспособность клеток штамма-продуцента биопрепарата и эффективность протравливания семян яровых зерновых культур при совместном применении биопрепарата с химическими фунгицидами, взятыми в производственных и половинных от рекомендованных в производстве дозах.

6. Оценить эффективность применения биопрепарата в качестве протравителя семян в условиях производственных испытаний.

Научная новизна. Впервые выделен региональный штамм, относящийся к виду Bacillus amyloliquefaciens, одновременно обладающий комплексом свойств: антагонистической активностью к широкому спектру возбудителей заболеваний растений; стимулирующим действием на рост и развитие растений; способностью фиксировать молекулярный азот в чистой культуре, воспроизводимой в условиях почвенного экоценоза; фосфатмобилизующей активностью; позитивным действием на ферментативную активность почвы; не проявляющий токсического эффекта на растительные и животные объекты; совместимый с используемыми в сельскохозяйственном производстве фунгицидами на основе манкоцеба, мефеноксама, карбендазима, беномила, хлорокиси меди, флудиоксонила, тирама, тритиконазола, инсектицидами на основе тиаметоксама, бенсултапа, ацетамиприда, фипронила, гербицидами на основе глифосата, клопиралида.

Впервые разработан биопрепарат, способствующий при протравливании семян яровых культур пшеницы и ячменя снижению уровня их пораженности на 96.5-100.0% и обеззараживанию зерен от возбудителя оливковой плесени (Cladosporium herbarum), черной (Xanthomonas sp.) и базальной пятнистости (Pseudomonas sp.) зерновых культур, плесневых грибов из родов Penicillium и Mucor. Показано, что одним из механизмов реализации антагонистического действия B.amyloliquefaciens ВКПМ В-11008 является синтез хитиназы.

Научно-практическая значимость работы. Результаты работы способствуют решению проблемы стабилизации фитосанитарного состояния семенного фонда и посевов зерновых культур, повышения уровня почвенного плодородия и урожайности растений. Штамм-продуцент биопрепарата депонирован в ВКПМ при ФГУП ГосНИИгенетика (Москва) под коллекционным номером ВКПМ В-11008. На основе B.amyloliquefaciens ВКПМ В-11008 обоснована технология производства биопрепарата в жидкой форме с использованием в качестве сырья для культивирования бактерий отхода зерноперерабатывающего производства (пшеничные отруби) и в качестве стабилизатора биомассы, консерватора и прилипателя гуматов, обеспечивающих продление срока хранения биопрепарата.

Отработан способ применения (протравитель семян) и норма расхода (1.5 л/т) биопрепарата для улучшения фитосанитарного состояния семенного фонда яровых зерновых культур и посевов яровой пшеницы. Показанная нами в лабораторных исследованиях и производственных испытаниях эффективность предпосевной обработки биопрепаратом зерен яровой пшеницы позволяет нам рекомендовать биопрепарат к использованию в сельскохозяйственном производстве в качестве протравителя семян. Установленная в работе эффективность совместного применения биопрепарата с химическими фунгицидами, взятыми в половинных от рекомендуемых нормах расхода, а также совместимость с гербицидами и инсектицидами, позволяют нам рекомендовать биопрепарат к использованию в интегрированных системах защиты растений.

Положения, выносимые на защиту:

1. Из выделенных изолятов бацилл штамм B.amyloliquefaciens ВКПМ В-11008 обладает антагонистической активностью к широкому спектру возбудителей заболеваний растений и стимулирующим действием на рост и развитие растений.

2. Применение биопрепарата, созданного на основе B.amyloliquefaciens ВКПМ В-11008, позволяет повысить уровень почвенного плодородия и режим минерального питания растений вследствие наличия фосфатмобилизующей активности, повышения активности почвенных ферментов, способности к фиксации молекулярного азота.

3. Биологическая эффективность биопрепарата, используемого в качестве протравителя семян яровой пшеницы при норме расхода 1.5 л/т зерна, против основных болезней яровой пшеницы составляет в среднем 56.2-82.4%.

4. Биопрепарат совместим с химическими фунгицидами, инсектицидами и гербицидами. Протравливание семян зерновых культур баковыми смесями бацизулина с фунгицидами сопровождается устранением ретардантного действия фунгицидов.

Связь работы с научными программами и собственный вклад автора в исследования. Работа выполнена в соответствии с тематическим планом КФУ, регистрационный номер 01200955076, «Механизмы регуляции функциональной активности клеток». Научные положения диссертации и выводы базируются на результатах собственных исследований автора.

Апробация работы. Материалы диссертации представлены на II съезде Хитинового общества и VII Международной конференции «Современные перспективы в исследовании хитина и хитозана» (Санкт-Петербург–Репино, 2003); Международной конференции «Роль почвы в формировании естественных и антропогенных ландшафтов» (Казань, 2003); научно-практической конференции «Биотехнологии – на поля Татарстана» (Казань, 2004); Международной научной конференции «Экология и биология почв» (Ростов-на-Дону, 2004); II Международной научной конференции «Биотехнология – охране окружающей среды» и III школе-конференции молодых ученых «Сохранение биоразнообразия и рациональное использование биологических ресурсов» (Москва, 2004); IX Международной конференции «Окружающая среда для нас и будущих поколений» (Самара, 2004); Всероссийской научной конференции «Современные аспекты экологии и экологического образования» (Казань, 2005); Международной научной конференции «Проблемы устойчивого функционирования водных и наземных экосистем» (Ростов-на-Дону, 2006).

Публикации. По материалам диссертации опубликовано 15 печатных работ, из них 6 статей в центральных отечественных рецензируемых журналах: Вестник Российской Академии сельскохозяйственных наук, Токсикологический вестник и Ученые записки Казанского университета, секция естественные науки.

Место выполнения работы. Казанский (Приволжский) федеральный университет.

Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, описания материалов и методов, результатов и обсуждения, заключения, выводов, списка литературы и приложения. Работа изложена на 196 страницах машинописного текста, включает 16 рисунков и 32 таблицы. Библиография содержит 297 наименований, в том числе 98 – зарубежных.


МАТЕРИАЛЫ И МЕТОДЫ

В качестве основных объектов исследования использовали выделенные из различных экологических ниш региональные штаммы бактерий из рода Bacillus, коллекционные (ВКМ, Москва; ВНИИЗР, Санкт-Петербург) и региональные штаммы фитопатогенных микромицетов, семена различных сортов яровых культур пшеницы и ячменя, белые беспородные крысы, химические фунгициды, гербициды, инсектициды и почвенные образцы чернозема выщелоченного тяжелосуглинистого, отобранного на территории Республики Тататрстан.

Определение уровня антагонистической активности бактерий. Антагонистическую активность штаммов Bacillus выявляли методом лунок (Егоров, 1994). Оценку антагонистической активности осуществляли на 7-е сут инкубации по диаметру стерильных зон в грибном газоне, образующихся вокруг лунок.

Определение ферментативной активности бактерий. Общую хитиназную активность определяли по количеству образующихся в результате гидролиза хитина редуцирующих сахаров с динитросалицилловым реагентом (ДНС-метод) (Актуганов, 2000). Удельную активность определяли как отношение величины общей ферментативной активности в культуральной жидкости к величине оптической плотности роста (СФ-46, λ=590 нм) и выражали в усл.ед.

Активность ФМЭ определяли с использованием в качестве субстрата п-нитрофенилфосфата (Лещинская, 1980) и выражали в мкМ расщепленного субстрата, гидролизуемого 1 мл ферментного раствора за 1 мин инкубации. Для пересчета использовали калибровочную кривую зависимости поглощения раствора при λ=410 нм от концентрации п-нитрофенола.

Нитрогеназную активность Bacillus определяли ацетиленовым методом, который основан на способности нитрогеназы восстанавливать ацетилен до этилена в количестве, пропорциональном количеству азота, с использованием газового хроматографа (Калининская и др., 1981). Активность нитрогеназы выражали в мкг N2/мл×ч.

Определение фитотоксической активности штаммов Bacillus. Фитотоксическую активность штаммов Bacillus исследовали методом замачивания семян растений и по методу Берестецкого (Лещинская, 1993). Наличие фитотоксинов в составе выделяемых бактериями метаболитов выявляли по накоплению биомассы наземной и корневой частей проростков, показателям всхожести и энергии прорастания семян.

Выявление цитогенотоксической активности штаммов Bacillus. Цитогенетическую токсичность выявляли по изменению митотической активности клеток пророщенных семян лука репчатого Allium cepa (сорт Каба) и скерды зеленой Crepis capillaris (Дубинина, 1978). Анализ аберраций проводили метафазным методом на пророщенных семенах скерды (Семенов и др., 2000).

Определение токсичности штаммов Bacillus для теплокровных животных. Определение параметров токсичности штаммов Bacillus для теплокровных животных проводили в соответствии с методическими указаниями (Методические указания, 1991). Параметры острой токсичности изучали при однократном внутрижелудочном введении бактериальных культур в дозах 1.0×1010, 0.5×1010, 0.25×1010 КОЕ/кг массы тела животного (по 12 самцов и 12 самок на дозу) с последующим наблюдением за животными в течение 14 суток, хронической токсичности – при внутрижелудочном введении малых доз (1.0×108, 1.0×107, 1.0×106 КОЕ/кг) по 5 раз в неделю в течение 6 месяцев (по 12 самцов и 12 самок на дозу). Определение острой дермальной токсичности проводили путем накожной аппликации салфетки, пропитанной бактериальной культурой без разведения или 50%-ным водным раствором (в дозах 0.25×1010 или 0.125×1010 КОЕ/кг соответственно). В контрольных вариантах использовали стерильную воду в эквивалентном объеме. Дисбиотическое действие штаммов Bacillus в остром, хроническом эксперименте и при изучении кумулятивного эффекта выявляли путем анализа бактериоценоза кишечника. Для выявления энтеробактерий использовали селективные среды: Эндо, Левина, Плоскирева, Олькеницкого. Гемолизирующую и кокковую микрофлору выявляли на МПА с добавлением 5% донорской крови. Анаэробы и микроаэрофилы выделяли в специальных полужидких средах для выращивания бифидобактерий и лактобактерий. Микроскопическое изучение структуры сердца, легких, селезенки, тимуса, лимфоузлов, печени, почек, кишечника у животных, получивших максимальные испытываемые дозы, проводили после приготовления гистологических препаратов (Ромейс, 1953). Диссеминационный эффект в остром и хроническом экспериментах определяли методом отпечатка частей органов на поверхность МПА. Клинические анализы периферической крови белых крыс проводили согласно (Меньшиков, 1987).

Определение таксономической принадлежности штамма-продуцента биопрепарата. Фенотипические признаки штамма-продуцента биопрепарата изучали согласно (Сайманова и Захарова, 1980; Захарова и др., 2005). Таксономическую принадлежность штамма определяли при помощи анализа сигнатурных нуклеотидных последовательностей генов 16S рРНК и gyrA в базе данных GenBank/EMBL/DDBJ (http://www.ncbi.nlm.nih.gov) с помощью множественного выравнивания в программе BLASTn (http://www.ncbi.nlm.nih.gov/BLAST/). ПЦР-амплификацию фрагментов генов проводили по стандартной методике (Sambrook et al., 2001) в циклере MJ Mini Personal Thermal Cycler (Bio-RAD, Сингапур) с использованием синтезированных ООО «НПФ Синтол» (Россия, Москва) универсальных прокариотических праймеров (Weisburg et al., 1991) в случае гена 16S рРНК и видоспецифических праймеров (Clerck et al., 2004) в случае гена gyrA.

Продукты ПЦР-амплификации анализировали электрофорезом в 1%-м агарозном геле. Визуализацию ДНК проводили в УФ-свете на трансиллюминаторе UV Transilluminator TFP-M\WL (Vilber lourmat, Франция), регистрировали с помощью фотографической системы Gel Imager GI-2 (Helicon, Japan). Фрагменты гена из агарозного геля выделяли с помощью набора AxyPrep DNA Gel Extraction Kit (AxyGen biosciences, USA) согласно протоколу фирмы-изготовителя. ДНК-секвенирование проводили с использованием универсальных праймеров (Weisburg et al., 1991) в случае гена 16S рРНК и видоспецифических праймеров (Clerck et al., 2004) в случае гена gyrA, синтезированных ООО «НПФ Синтол» (Россия, Москва).

Условия хранения и культивирования штамма-продуцента биопрепарата. Штамм-продуцент биопрепарата хранили в музейной культуре на МПА под слоем минерального масла при температуре +4оС. Препарат получали методом глубинного культивирования. В качестве посевного материала использовали суточную культуру с титром не менее 1.0×108 КОЕ/мл, который вносили в количестве 5-10 об.%, дающем оптическую плотность суспензии 0.1 ед. (λ=590 нм, l=10 мм). Культивирование бактерий проводили в колбах Эрленмейера емкостью 250 мл при соотношении объёма среды к объёму колбы 1:7.5 в условиях аэрации (180 об/мин).

Подбор оптимальной для культивирования штамма-продуцента питательной среды. При подборе оптимальной для культивирования бактерий питательной среды в качестве экспериментальных использовали мелассную, пшеничную, картофельно-глюкозную среды (Семенов, 1990), мелассно-кукурузную и пшенично-кукурузную с дополнительным внесением в состав исходных сред кукурузного экстракта из расчета 1.0 г/л. Титр жизнеспособных клеток (N) определяли путем высева предельных разведений клеточной суспензии на МПА с последующим подсчетом КОЕ в 1 мл среды; количество спор – методом высева на МПА предельных разведений суспензии, выдержанной при температуре 90°С в течение 45 мин, с последующим подсчетом КОЕ в 1 мл (Звягинцев, 1991). Аминный азот и содержание сахаров определяли общепринятыми методами (Коренман, 1975).

Подбор специальных компонентов биопрепарата. В экспериментах по подбору специальных компонентов биофунгицида в бактериальную культуру вносили ПВС (Sigma, USA), Na-КМЦ (Sigma, USA) и СГК (Селен, Россия) до концентрации 2.0 и 3.0 об.%. Оценивали титр жизнеспособных клеток и спор, антагонистическую и фитотоксическую активность через 7 сут после внесения.

Определение влияния биопрепарата на ферментативную активность почвы. Обработку почвы биопрепаратом проводили согласно рекомендациям (Хазиев, 2005). Уреазную активность почвы регистрировали, применяя метод Галстяна; протеолитическую активность почвы определяли методом Галстяна и Арутюняна; целлюлазную активность – биохимическим методом, используя в качестве субстрата Na-КМЦ (Хазиев, 2005). Контролем служила почва, стерилизованная сухим жаром в режиме 180ºС, 1 ч.

Определение активности азотфиксации почвы. Активность азотфиксации в почве определяли ацетиленовым методом, который основан на способности нитрогеназы восстанавливать ацетилен до этилена в количестве, пропорциональном количеству азота (Звягинцев, 1991).

Определение фосфатмобилизующей активности штамма-продуцента в жидких питательных средах проводили в условиях стационарного культивирования в жидкой среде Муромцева, содержащей неорганические (Ca3(PO4)2, FePO4, AlPO4) или органические (фитат Са-Mg, глицерофосфат) соединения фосфора (500 мг/л среды). Среды засевали стандартными взвесями культуры в экспоненциальной фазе роста из расчета 2.0×106 КОЕ/мл. Контролем служили среды с фосфатом без инокулята. В модельном опыте образцы почвы инокулировали бактериальной суспензией (2.0×107 КОЕ/г абсолютно сухой почвы). Через 1 и 3 месяца инкубации определяли содержание подвижного фосфора по методу Кирсанова (Агрохимические методы, 1975).

Изучение эффективности применения биопрепарата в качестве протравителя семян зерновых культур. Семена яровых культур пшеницы и ячменя протравливали общепринятым полусухим способом (Смелик и др., 2011) при норме высева всхожих семян 6 млн. зерен на 1 га, нормах расхода биопрепарата 1.5 л/т зерна (расход рабочей жидкости – 10 л/т), эталонных фунгицидов – в соответствии с рекомендованными (Список, 2012). Оценку пораженности обработанных и необработанных семян зерновых культур проводили, используя метод анализа семян во влажной камере и метод развития болезней проростков зерновых культур (ГОСТ 12044-93).

Влияние пестицидов на жизнеспособность клеток бактерий. Влияние пестицидов на жизнеспособность клеток бацилл оценивали методом чашечного подсчета (Луста, 1990). Для этого готовили смеси бактериальной суспензии (конечный титр 5.0×109 кл/мл) с фунгицидами (максим, премис тотал, ридомил МЦ, ТМТД, феразим, фундазол, хлорокись меди), инсектицидами (актара, базудин, банкол, корадо, моспилан, регент) и гербицидами (лонтрел, раундап).

Определение эффективности протравливания семян биопрепаратом совместно с химическими фунгицидами проводили путем обработки зерен пшеницы (сорт Люба) и ячменя (сорт Раушан) баковыми смесями биопрепарата 1.5 л/т семян (1.5-2.9×107 КОЕ/зерно) с половинными от производственных дозами ТМТД, премиса тотал, фундазола, феразима (Список, 2012).

Определение эффективности биопрепарата в защите яровой пшеницы от болезней. Производственные испытания биопрепарата в качестве протравителя семян проводили по методике полевых и вегетационных опытов (Доспехов, 1985) и в соответствии с указаниями (Сычев и др., 2009). Эталонами сравнения служили фитоспорин-М, п (0.2 кг/т), дивиденд стар, кс (1.0 л/т), колфуго дуплет, кс (2.0 л/т), премис двести, кс (0.2 л/т) (Список, 2012). Площадь делянок по каждому из вариантов – 1.5 га, повторность пятикратная, предшественник – яровой ячмень. Учет распространенности и интенсивности развития болезней пшеницы, а также фенологические наблюдения за ростом и развитием растений осуществляли в соответствии с рекомендациями ВНИИЗР (Ишкова и др., 2002) и Госхимкомиссии РФ (Методические указания, 1985). Структуру урожая определяли по 100 растениям, отобранным из средних проб сноповых образцов. Содержание клейковины и белка в зерне оценивали стандартными методами (Личко, 2004). Экономическую эффективность биопрепарата рассчитывали как разность между стоимостью сохраненного урожая зерна на единицу площади на обработанном и контрольном вариантах.

Статистическую обработку результатов осуществляли с помощью электронных таблиц Excel и программы Origin 7.0. Достоверность различий оценивали с помощью t-критерия Стьюдента (р<0.05). При статистической обработке результатов производственных испытаний (Доспехов, 1985) определяли средние арифметические и их доверительные интервалы для уровня вероятности 95%. Для оценки существенности частных различий вычисляли ошибку опыта, ошибку разности средних и наименьшую существенную разность (НСР05) в абсолютных величинах для 5%-ного уровня значимости.



следующая страница >>